'Rjyjvtnhbrf

  • 11 окт. 2012 г.
  • 1570 Слова
Содержание.
1. Введение 3
2. Линейная регрессия 4
3. Пример линейной регрессии 5
4. Применение линейной регрессии впрогнозировании 11
5. Заключение 14
6. Список использованной литературы 15

Введение.

     Эконометрика  – это наука, изучающая конкретные количественные и качественные взаимосвязи экономических объектов и процессов с помощьюматематических и статистических методов и моделей.

Линейная регрессия (англ. Linear regression) — используемая в статистике регрессионная модель зависимости одной (объясняемой, зависимой) переменной y от другой или нескольких других переменных (факторов, регрессоров, независимых переменных) x с линейной функцией зависимости.
Модель линейной регрессии является часто используемой и наиболее изученнойв эконометрике. А именно изучены свойства оценок параметров, получаемых различными методами при тех или иных предположениях о вероятностных характеристиках факторов и случайных ошибок модели. Предельные (асимптотические) свойства оценок нелинейных моделей также выводятся исходя из аппроксимации последних линейными моделями. Необходимо отметить, что с эконометрической точки зрения более важное значение имеет линейностьпо параметрам, чем линейность по факторам модели.
 

Линейная регрессия.Задачей множественной линейной регрессии является построение линейной модели связи между набором непрерывных предикторов и непрерывной зависимой переменной. Часто используется следующее регрессионное уравнение:     Здесь аi - регрессионные коэффициенты, b0 - свободный член (если он используется), е - член, содержащий ошибку -по поводу него делаются различные предположения, которые, однако, чаще сводятся к нормальности распределения с нулевым вектором мат. ожидания и корреляционной матрицей.Такой линейной моделью хорошо описываются многие задачи в различных предметных областях, например, экономике, промышленности, медицине. Это происходит потому, что некоторые задачи линейны по своей природе.Приведем простой пример.Пусть требуется предсказать стоимость прокладки дороги по известным ее параметрам. При этом у нас есть данные о уже проложенных дорогах с указанием протяженности, глубины обсыпки, количества рабочего материала, числе рабочих и так далее.Ясно, что стоимость дороги в итоге станет равной сумме стоимостей всех этих факторов в отдельности. Потребуется некоторое количество, например, щебня, с известнойстоимостью за тонну, некоторое количество асфальта также с известной стоимостью.Возможно, для прокладки придется вырубать лес, что также приведет к дополнительным затратам. Все это вместе даст стоимость создания дороги. При этом в модель войдет свободный член, который, например, будет отвечать за организационные расходы (которые примерно одинаковы для всех строительно-монтажных работ данного уровня) илиналоговые отчисления.Ошибка будет включать в себя факторы, которые мы не учли при построении модели (например, погоду при строительстве - ее вообще учесть невозможно). Пример линейной регрессии.Выбрав вид функции регрессии, т.е. вид рассматриваемой модели зависимости Y от Х (или Х от У), например, линейную модель yx=a+bx, необходимо определить конкретные значения коэффициентов модели.При различныхзначениях а и b можно построить бесконечное число зависимостей вида yx=a+bx т.е на координатной плоскости имеется бесконечное количество прямых, нам же необходима такая зависимость, которая соответствует наблюдаемым значениям наилучшим образом. Таким образом, задача сводится к подбору наилучших коэффициентов.Линейную функцию a+bx ищем, исходя лишь из...
tracking img