Ergghberb

  • 17 янв. 2012 г.
  • 2079 Слова
Код: VMAT-2-02
Дисциплина: Высшая математика
Тип работы: Тестовые работы
Тема: Высшая математика, тест
Объем: 18 заданий
Оценка: 5
Источник: http://abc74.ru

Задание 1
Вопрос 1. Пусть А, В - множества. Что означает запись A  B, B  A?
1. Множество А является строгим подмножеством множества В, которое является истинным подмножеством множества А
2. Множества А, В являютсябесконечными
3. Множества А, В являются конечными
4. Множества А, В не являются пустыми
5. Множества А, В равны
Вопрос 2. Пусть А - непустое множество всех учеников школы (A # ø), В - множество учеников пятых классов этой школы, С - множество учеников седьмых классов этой школы. Какая из записей выражает ложное утверждение? (Скобки здесь, как и в арифметических выражениях, задают порядок действий).
1. B  A
2.B  C  A
3. B \ C  A
4. (B∩A)\A = ø
5. A  ( B  C)
Вопрос 3. Какое из утверждений не всегда (не для любых множеств А, В, С) является верным?
1. A∩B = B∩A
2. A  B = B  A
3. A\B = B\A
4. A  (B C) = (A B)  (A  C)
5. A  (B C) = (A B)  (A  C)
Вопрос 4. Пусть N H- множество дней недели, а N Я - множество дней в январе. Какова мощность множества N H• N Я?
1. 38
2. 2173. 365
4. 31
5. 7
Вопрос 5. Рассмотрим множество показаний часов v = {(d 1,d 2,d 3)│d 1 N, d 2 N,d 3 N,0 ≤ d1 ≤ 23, 0 ≤ d2 ≤ 59, 0 ≤ d 3 ≤ 59} Что можно утверждать относительно элемента а множества п β v ? (aп β V) .
1. a  R \ N
2. a  N 2
3. a  R 2
4. a ≤ 59
5. a ≤ 23

Задание 2
Вопрос 1. Рассмотрим соответствие G между множествами А и В (G  A  B) . В каком случаесоответствие называется всюду определенным?
1. пр1 G = B
2. пр2 G = B
3. пр1 G = A
4. пр2G = A
5. A=B
Вопрос 2. Допустим, что существует взаимнооднозначное соответствие G между множествами А и В. Что можно сказать об их мощностях?
1. │A│- │B│ 0
2. │A│+│B│=│G│
3. │A│+│B││G│+│G│
4. │A│-│B│= 0
5. │G│-│B││A│
Вопрос 3. Какая функция не является суперпозицией функций f1(x1,x2) = x1•x2, f2(x1,x2) = x1 • x2 + x2, f3(x1 + x2)2?
1. f 1(f 2(x 3, x 4),f 3(x1, x4))
2. f 1(x 1, x 2) + f 2(x 1, x 2)
3. f 3(f 1(x1, x 1), x 2)
4. ( f 2 (x 1, x 2) + f 1 (x3, x 4))2
5. f 1(x 1, x 2) • x3
Вопрос 4. Рассмотрим бинарное отношение R на множестве М. Что можно утверждать об R, если это отношение транзитивно?
1. Если a  M, то имеет место aRa
2. Если a  M, b  M, то aRa тогда итолько тогда, когда bRa
3. В множестве М нет элемента а такого, что выполняетс я aRa
4. Если для элементов a, b, c множества М выполняется aRb и aRc, то не выполняется aRc
5. , где - транзитивное замыкание R
Вопрос 5. Каким свойством не обладает отношение нестрогого порядка R?
1. Рефлексивность
2. Транзитивность
3. Антисимметричность
4. , где - транзитивное замыкание R
5.Симметричность

Задание 3
Вопрос 1. Какова сигнатура булевой алгебры множеств?
1. { β(),,,¯}
2. { ,¯, }
3. U2  U
4. { +,- ,•}
5. { , ¯ }
Вопрос 2. Какая операция не является ассоциативной?
1. Объединение множеств
2. Деление чисел
3. Композиция отображений
4. Умножение дробей
5. Пересечение множеств
Вопрос 3. Рассмотрим алгебру A = ( M, 1, 2, 3) и алгебру . В каком случае можно утверждать,что│M│+│N│?
1. Если имеет место гомоморфизм А в В
2. Если имеет место гомоморфизм В в А
3. Если А и В изоморфны
4. Если совпадает арность операций и , и , и
5. Если существует отображение Г:M  N, удовлетворяющее условию для всех i = 1, 2, 3и всех mi,  M, где I(i) - арность операции 2и
Вопрос 4. Какая операция является обязательным атрибутом полугруппы?
1. Умножение на 2
2.Извлечение квадратного корня
3. Бинарная ассоциативная
4. Композиция отображений
5. Операция отождествления
Вопрос 5. Чем является полугруппа (M; + )? (M = {0, 1, 2, 3…} = N {0})
1. Абелевой группой
2. Циклической группой
3. Свободной полугруппой
4. Моноидом
5. Циклической полугруппой

Задание 4
Вопрос 1. Какое из чисел является...
tracking img