Fizika

  • 30 сент. 2011 г.
  • 2084 Слова
3 Интерференция от клина. Полосы равной толщины
Мы рассмотрели интерференционные опыты, в которых деление амплитуды световой волны от источника происходило в результате частичного отражения на поверхностях плоскопараллельной пластинки. Локализованные полосы при протяженном источнике можно наблюдать и в других условиях. Оказывается, что для достаточно тонкой пластинки или пленки (поверхностикоторой не обязательно должны быть параллельными и вообще плоскими) можно наблюдать интерференционную картину, локализованную вблизи отражающей поверхности. Возникающие при этих условиях полосы называют полосами равной толщины. В белом свете интерференционные полосы окрашены. Поэтому такое явление называют цветами тонких пленок. Его легко наблюдать на мыльных пузырях, на тонких пленках масла или бензина,плавающих на поверхности воды, на пленках окислов, возникающих на поверхности металлов при закалке, и т.п.
Рассмотрим интерференционную картину, получаемую от пластинок переменной толщины (от клина).

Рис. 8.10
Направления распространения световой волны, отраженной от верхней и нижней границы клина, не совпадают. Отраженные и преломленные лучи встречаются, поэтому интерференционную картину приотражении от клина можно наблюдать и без использования линзы, если поместить экран в плоскость точек пересечения лучей (хрусталик глаза помещают в нужную плоскость).
Интерференция будет наблюдаться только во 2-й области клина, так как в 1-й области оптическая разность хода будет больше длины когерентности.
Результат интерференции в точках и экрана определяется по известной формуле , подставляя внеё толщину пленки в месте падения луча ( или ). Свет обязательно должен быть параллельным ( ): если одновременно будут изменяться два параметра b и α, то устойчивой интерференционной картины не будет.
Поскольку разность хода лучей, отразившихся от различных участков клина, будет неодинаковой, освещенность экрана будет неравномерной, на экране будут темные и светлые полосы (или цветные приосвещении белым светом, как показано на рис. 8.11). Каждая из таких полос возникает в результате отражения от участков клина с одинаковой толщиной, поэтому их называют полосами равной толщины.

4
Пластинка переменной толщины. Пусть на клин с острым углом ( ) падает плоская световая волна. При отражении падающего луча 1 от верхней и нижней поверхностей клина возникают лучи 1¢ и 1¢¢ соответственно. Прираспространении они пересекаются в точке . Можно показать, что аналогичные точки пересечения других пар отраженных лучей лежат в одной плоскости, проходящей через вершину клина O. Временная когерентность будет выполняться для тех лучей, для которых толщина клина в месте отражения удовлетворяет условию (3). Допустим, что это условие выполняется для всего клина или хотя бы для его части. Тогда в плоскости экранабудет наблюдаться интерференционная картина в виде полос, параллельных ребру клина O. Каждая из таких полос возникает в результате отражения от участков клина с одинаковой толщиной, вследствие чего их называют полосами равной толщины.
При другом расположении экрана (например, и ) интерференция также возможна. Поскольку, в этом случае на экране пересекаются отражения разных лучей, тосоответствующие падающие лучи должны быть пространственно когерентны (например, когерентны лучи 1¢¢ и 2¢ — экран или 1¢¢ и 3¢ — экран ). При ограниченной пространственной когерентности область локализации интерференционной картины (т.е. область пространства, располагая в которой экран можно наблюдать на нем интерференционную картину) также оказывается ограниченной. Причем эта область тем уже, чем меньше степеньпространственной когерентности падающей волны.
Рассмотрим условия соблюдения пространственной когерентности. При рассмотрении считаем толщину пластинки неизменной. Из рис. видно, что расстояние между падающими лучами 1 и 2 равно.
Если принять , то для получается (для нормального падения ). Радиус когерентности солнечного света имеет значение порядка 0,05 мм....
tracking img