Gfdeerr

  • 11 апр. 2012 г.
  • 380 Слова
Определение. На множестве А определена алгебраическая операция, если каждым двум элементам этого множества, взятым в определенном порядке, однозначным образом поставлен в соответствие некоторыйтретий элемент из этого же множества.
Примерами алгебраических операций могут служить такие операции как сложение и вычитание целых чисел, сложение и вычитание векторов, матриц, умножение квадратных матриц,векторное умножение векторов и др.
Отметим, что скалярное произведение векторов не может считаться алгебраической операцией, т.к. результатом скалярного произведения будет число, и числа не относятся кмножеству векторов, к которому относятся сомножители.
Замечание. Вообще говоря, операция, определённая таким образом, называется бинарной, поскольку в ней участвуют два элемента. Но также можно говоритьоб унарных операциях, в которых участвует только один элемент данного множества, и в соответствие ему однозначным образом поставлен второй элемент этого множества. Таковы, например, операции извлечения корняквадратного или нахождения модуля числа.
Аналогично можно определить тринарную и прочие операции на данном множестве, в зависимости от количества участвующих в них элементов. В общем случае, операцией намножестве будем называть функцию типа .
Определение. Операция , отображающая любой элемент множества в себя, называется тождественной операцией.
Тождественной операцией на множестве , например, являетсяумножение на единицу.
Для того чтобы описанные ниже соотношения выглядели бы более привычно, положим результат применения бинарной операции элементам записывать не в функциональном виде , а виде ,принятом для записи арифметических операций.
Определение. Операция называется коммутативной, если для любых элементов выполняется: .
Операции сложения и умножения чисел коммутативны, а вычитание и делениенекоммутативны. Также некоммутативна операция умножения матриц (как известно из курса линейной алгебры).
Определение. Операция называется ассоциативной, если для...
tracking img