Hhgghghh

  • 30 янв. 2012 г.
  • 1971 Слова
Министерство образования и науки
Актюбинский колледж экономики статистики и информатики

КОНТРОЛЬНАЯ РАБОТА
По дисциплине: Статистика
Вариант №6

Выполнил: студент 105гр. Айтжанов А.
Проверил: Унгарбаева Ш.Т.

Актобе 2012г.
Содержание
Введение…………………………………………………………….. 3
Мода………………………………………………………………… 4
Медиана……………………………………………………………... 5Определение моды и медианы в статистике……………………… 6
Нахождение моды и медианы в дискретном вариационном ряду..7
Расчет моды и медианы в интервальном вариационном ряду…..8

Введение

Средние величины и связанные с ними показатели вариации играют в статистике очень большую роль, что обусловлено предметом ее изучения. Поэтому данная тема является одной из центральных в курсе.
Средняя является оченьраспространенным обобщающим показателям в статистике. Это объясняется тем, что только с помощью средней можно охарактеризовать совокупность по количественно варьирующему признаку. Средней величиной в статистике называется обобщающая характеристика совокупности однотипных явлений по какому-либо количественно варьирующему признаку. Средняя показывает уровень этого признака, отнесенный к единице совокупности.
Изучая общественныеявления и стремясь выявить их характерные, типичные черты в конкретных условиях места и времени, статистики широко используют средние величины. С помощью средних можно сравнивать между собой различные совокупности по варьирующим признакам.
Средние, которые применяются в статистике, относятся к классу степенных средних. Из степенных средних наиболее часто применяется средняя арифметическая, реже –средняя гармоническая; средняя гармоническая применяется только при исчислении средних темпов динамики, а средняя квадратическая – только при исчислении показателей вариации.
Средняя арифметическая есть частное от деления суммы вариант на их число. Она применяется в тех случаях, когда объем варьирующего признака для всей совокупности образуется как сумма значений признака у отдельных ее единиц.Средняя арифметическая – наиболее распространенный вид средних, так как она соответствует природе общественных явлений, где объем варьирующих признаков в совокупности чаще всего образуется именно как сумма значений признака у отдельных единиц совокупности.
По своему определяющему свойству средняя гармоническая должна применяться тогда, когда общий объем признака образуется как сумма обратных значенийвариант. Ее применяют тогда, когда в зависимости от имеющего материала веса приходиться не умножать, а делить на варианты или, что то же самое, умножать на обратное их значение. Средняя гармоническая в этих случаях – это величина обратная средней арифметической из обратных значений признака.
К средней гармонической следует прибегать в тех случаях, когда в качестве весов применяются не единицысовокупности – носители признака, а произведения этих единиц на значение признака.Мода — значение во множестве наблюдений, которое встречается наиболее часто. Случайная величина может не иметь моды. Иногда в совокупности встречается более чем одна мода (например: 2, 6, 6, 6, 8, 9, 9, 9, 10; мода = 6 и 9). В этом случае можно сказать, что совокупность мультимодальна. Из структурных средних величин толькомода обладает таким уникальным свойством. Как правило мультимодальность указывает на то, что набор данных не подчиняется нормальному распределению[->0].
Мода как средняя величина[->1] употребляется чаще для данных, имеющих нечисловую природу. Среди перечисленных цветов автомобилей — белый, черный, синий металлик, белый, синий металлик, белый — мода будет равна белому цвету. При экспертной оценке с еёпомощью определяют наиболее популярные типы продукта, что учитывается при прогнозе продаж или планировании их производства.
Медиана (50-й процентиль, квантиль 0,5) — возможное значение признака, которое делит ранжированную совокупность (вариационный ряд выборки) на две равные части: 50 % «нижних» единиц ряда данных будут иметь значение признака не...
tracking img