HHH hgj fgghjrf ghgjgfhjf fhfkfh

  • 22 нояб. 2012 г.
  • 1506 Слова
Глава 6. ДИСПЕРСИОННЫЙ АНАЛИЗ
Переменные, которыми можно управлять при проведении эксперимента (например, методы обучения или другие критерии, позволяющие разделить наблюдения на группы или классифицировать) называются факторами или независимыми переменными.
Дисперсионным анализом называется статистический метод анализа результатов испытаний, цель которого - оценить влияние одного илинескольких качественных факторов на рассматриваемую величину X.

6.1. РАЗБИЕНИЕ СУММЫ КВАДРАТОВ
При исследовании статистической значимости различия между средними двух (или нескольких) групп, осуществляется анализ выборочных дисперсий. Фундаментальная концепция дисперсионного анализа предложена Фишером в 1920 году. Возможно, более естественным был бы термин анализ суммы квадратов или анализ вариации,но в силу традиции употребляется термин дисперсионный анализ.
Для выборки объема п выборочная дисперсия вычисляется как сумма квадратов отклонений от выборочного среднего, деленная на п- I (объем выборки минус единица). Таким образом, при фиксированном объеме выборки n дисперсия есть функция суммы квадратов (отклонений), обозначаемая, для краткости, SS (от английского Sum of Squares - суммаквадратов).
В основе дисперсионного анализа лежит разделение дисперсии на части или компоненты. Рассмотрим следующий набор данных:
[pic]



Средние двух групп существенно различны (2 и 6 соответственно). Сумма квадратов отклонений внутри каждой группы равна 2. Складывая их, получаем 4. Если теперь повторить эти вычисления без учета групповой принадлежности, т е., если вычислить SS исходя изобщего среднего этих двух выборок, то получим величину 28. Иными словами, дисперсия (сумма квадратов), основанная на внутригрупповой изменчивости, приводит к гораздо меньшим значениям, чем при вычислении на основе общей изменчивости (относительно общего среднего). Причина этого, очевидно, заключается в существенной разнице между? средними значениями, и это различие между средними и объясняет существующееразличие между суммами квадратов.

ПРОВЕРКА ЗНАЧИМОСТИ
Внутригрупповая изменчивость (SS) обычно называется остаточной компонентой или дисперсией ошибки. Это означает, что при проведении эксперимента она не может быть предсказана или объяснена. С другой стороны, SS эффекта (или компоненту дисперсии между группами) можно объяснить различием между средними значениями в группах. Иными словами,принадлежность к некоторой группе объясняет межгрупповую изменчивость, т.к. нам известно, что эти группы обладают разными средними значениями.
Проверка значимости в дисперсионном анализе основана. на сравнении компоненты дисперсии, обусловленной межгрупповым разбросом (называемой средним квадратом эффекта или MS эффект) и компоненты дисперсии. обусловленной внутригрупповым разбросом (называемойсредним квадратом ошибки или MS ошибка.
Если верна нулевая гипотеза (равенство средних в двух популяциях), то можно ожидать сравнительно небольшое различие выборочных средних из-за чисто случайной изменчивости.
Поэтому, при нулевой гипотезе внутригрупповая дисперсия будет практически совпадать с общей дисперсией, подсчитанной без учета групповой принадлежности. Полученные внутригрупповыедисперсии можно сравнить с помощью F-критерия, проверяющего, действительно ли отношение дисперсий значимо больше 1.

МНОГОФАКТОРНЫЙ ДИСПЕРСИОННЫЙ АНАЛИЗ
Мир по своей природе сложен и многомерен. Ситуации, когда некоторое явление полностью описывается одной переменной, чрезвычайно редки. При проведении типичного эксперимента приходится иметь дело с большим количеством факторов. Основная причина, по которойиспользование дисперсионного анализа предпочтительнее повторного сравнения двух выборок при разных уровнях факторов с помощью серий F- критерия, заключается в том, что дисперсионный анализ существенно более эффективен и, для малых выборок, более информативен.
Проанализируем две выборки, состоящих из 3 мужчин и 3 женщин. Введем дополнительный параметр - пол. План...
tracking img