Netu

  • 27 нояб. 2012 г.
  • 3049 Слова
Особенности безгидратной эксплуатации газоконденсатных скважин

1.Оценка эффективности методов предупреждения гидратообразования при испытании газоконденсатных скважин

Как известно, освоение и эксплуатация газовых и газоконденсатных скважин на месторождениях севера Тюменской области сопровождается интенсивным гидратообразованием в стволе скважины, устьевой запорной арматуре, шлейфах идругих наземных коммуникациях. Некоторыми учеными были рассмотрены способы предупреждения гидратообразования и ликвидации гидратных пробок. Ниже приводятся данные, которые будут способствовать выбору оптимальных условий эксплуатации газовых и газоконденсатных скважин неокомских залежей, характеризующихся низкой и средней продуктивностью.
Прежде всего, необходимо установить, при каких условиях для данныхзалежей на глубинах 2300—3000 м наступает безгидратный режим работы вследствие прогрева ствола скважин восходящим потоком газа. В этом отношении характерно освоение скв. 58 Уренгойского месторождения и скв. 37 Заполярного месторождения.
В скв. 58 после замены глинистого раствора водой и снижения ее уровня в колонне получен газоконденсатный фонтан из интервалов 2885—2898 и 2915— 2923 м. Отработкаскважины велась по затрубному пространству через 2,5-дюймовые трубы в течение 13,5 часов и по НКТ через штуцер диаметром 22 мм — 4,5 часа. Затем скважина исследована на продуктивность, результаты приведены на рис. 1. Из рисунка видно: освоение и исследование на всех этапах работы проводились в безгидратном режиме (кривая “давление—температура” на режимах проходит выше и правее равновеснойгидратообразования).

Рис. 1. Результаты исследования скв. 58 Уренгойской площади. кривые: 1 — зависимость устьевой температуры от дебита; 2 — равновесная гидратообразования; 3,4 — зависимость устьевой температуры от давления газа;

В скв. 37 на глинистом растворе с удельным весом 1,2 г/см3 зарядами ПКС-105, с плотностью 7 отверстий на 1 погонный метр вскрытой мощности, перфорирован интервал 2878—2885 м. Приток после спускаНКТ на глубину 2882 м вызван сменой раствора на воду, понижением уровня воды в колонне путем свабирования с одновременной подкачкой воздуха в затрубное пространство компрессором низкого давления. После понижения уровня скважину остановили на приток при закрытом на устье затрубном пространстве. Через 14 часов при устьевом давлении 160 кгс/см2 произошел прорыв газа под башмак НКТ и скважина перешлана фонтанирование газоконденсатом. В отличие от скв. 58 здесь на всех режимах работы отмечалось гидратообразование на глубинах ниже 190—450 м. что подтверждалось спуском глубинных приборов. Для ликвидации гидратов и предупреждения их образования при остановке скважины в НКТ закачивали раствор хлористого кальция с удельным весом 1,2 г/см3. Результаты освоения и исследования представлены на рис.2.В связи с тем, что по этой скважине не определен состав пластового флюида и равновесную гидратообразования непосредственно рассчитать невозможно, для ориентировочной оценки использованы данные по аналогичным объектам скв. 1 того же месторождения (интервал 2614—2618 и 2365—2374 м). Как видно из рисунка, .термодинамические условия в стволе остановленной скважины благоприятствуют гидратообразованию винтервале 100—600 м, а на устье работающей — на протяжении всего периода исследований.

Рис. 2. Результаты исследования скв.37 Заполярной. кривые: 1 — термодинамические условия по стволу остановленной скважины; 2,3 — зависимости устьевой температуры от дебита и давления соответственно; 4,5 — равновесные гидратообразования для состава газа из скв.1 Заполярной площади.

На основе сопоставлениярассмотренных примеров можно предположить: при дебитах свыше 150—200 тыс. нм3/сут. скважины будут работать в безгидратном режиме за счет прогрева ствола восходящим потоком газа. Это подтверждается опытом растепления газоконденсатной скв.1 Ямбургского месторождения. При дебитах же до 50—100 тыс. нм3/сут., как правило, отмечается гидратообразование различной...
tracking img