Ntjhbz f

  • 29 мая 2012 г.
  • 2063 Слова
kujhbnvjd
Теория алгоритмов
Теория алгори́тмов — наука, изучающая общие свойства и закономерности алгоритмов и разнообразные формальные модели их представления. К задачам теории алгоритмов относятся формальное доказательство алгоритмической неразрешимости задач, асимптотический анализ сложности алгоритмов, классификация алгоритмов в соответствии с классами сложности, разработка критериевсравнительной оценки качества алгоритмов и т. п.
Во всех сферах своей деятельности, и частности в сфере обработки информации, человек сталкивается с различными способами или методиками решения задач. Они определяют порядок выполнения действий для получения желаемого результата – мы можем трактовать это как первоначальное или интуитивное определение алгоритма. Некоторые дополнительные требованияприводят к неформальному определению алгоритма:
Алгоритм – это всякая система вычислений, выполняемых по строго определенным правилам, которая после какого-либо числа шагов заведомо приводит к решению поставленной задачи.
Целью анализа трудоёмкости алгоритмов является нахождение оптимального алгоритма для решения данной задачи. В качестве критерия оптимальности алгоритмавыбирается трудоемкость алгоритма, понимаемая как количество элементарных операций, которые необходимо выполнить для решения задачи с помощью данного алгоритма. Функцией трудоемкости называется отношение, связывающие входные данные алгоритма с количеством элементарных операций.
Трудоёмкость алгоритмов по-разному зависит от входных данных. Для некоторых алгоритмов трудоемкость зависит только от объёмаданных, для других алгоритмов — от значений данных, в некоторых случаях порядок поступления данных может влиять на трудоемкость. Трудоёмкость многих алгоритмов может в той или иной мере зависеть от всех перечисленных выше факторов.
Одним из упрощенных видов анализа, используемых на практике, является асимптотический анализ алгоритмов. Целью асимптотического анализа является сравнениезатрат времени и других ресурсов различными алгоритмами, предназначенными для решения одной и той же задачи, при больших объёмах входных данных. Используемая в асимптотическом анализе оценка функции трудоёмкости, называемая сложностью алгоритма, позволяет определить, как быстро растет трудоёмкость алгоритма с увеличением объёма данных. В асимптотическом анализе алгоритмов используются обозначения,принятые в математическом асимптотическом анализе. Ниже перечислены основные оценки сложности.

Основной оценкой функции сложности алгоритма f(n) является оценка [pic]. Здесь n — величина объёма данных или длина входа. Мы говорим, что оценка сложности алгоритма

[pic]

если при g > 0 при n > 0 существуют положительные с1, с2, n0, такие, что:

[pic]

при n > n0, иначе говоря, можно найти такиес1 и c2, что при достаточно больших n f(n) будет заключена между

[pic] и [pic].

В таком случае говорят ещё, что функция g(n) является асимптотически точной оценкой функции f(n), так как по определению функция f(n) не отличается от функции g(n) с точностью до постоянного множителя (см. асимптотическое равенство). Например, для метода сортировки heapsort оценка трудоёмкости составляет[pic] то есть [pic]

Из [pic] следует, что [pic].

Важно понимать, что [pic] представляет собой не функцию, а множество функций, описывающих рост [pic] с точностью до постоянного множителя.

[pic] дает одновременно верхнюю и нижнюю оценки роста функции. Часто бывает необходимо рассматривать эти оценки по отдельности. Оценка [pic] представляет собой верхнюю асимптотическую оценкутрудоемкости алгоритма. Мы говорим, что [pic] если

[pic]

Иначе говоря, запись [pic] означает, что f(n) принадлежит классу функций, которые растут не быстрее, чем функция g(n) с точностью до постоянного множителя.

Оценка [pic] задает нижнюю асимптотическую оценку роста функции f(n) и определяет класс функций, которые растут не медленнее, чем g(n) с точностью до постоянного...
tracking img