Sdfsdf

  • 12 янв. 2012 г.
  • 2108 Слова
ДОКАЗАТЕЛЬСТВО ЛОГИЧЕСКОЙ НЕПРОТИВОРЕЧИВОСТИ ГЕОМЕТРИИ ЛОБАЧЕВСКОГО
Мы докажем непротиворечивость системы аксиом планиметрии Лобачевского, состоящей из четырех групп I1-3, II1-4, III1-5, IV1-2 аксиом Гильберта (аксиомы абсолютной планиметрии) и аксиомы V* Лобачевского. При решении этой задачи предполагается, что евклидова геометрия (т. е. система аксиом ∑H Гильберта) непротиворечива. Мы построимиз объектов евклидовой плоскости модель плоскости Лобачевского, которая называется евклидовой моделью Кэли — Клейна. Рассмотрим на евклидовой плоскости некоторую окружность ω с центром О радиуса r = 1 и назовем ее абсолютом. Обозначим через Ω круг с границей ω, а через  множество внутренних точек этого круга.
Введем следующие соглашения. Неевклидовой точкой назовем любую евклидову точку М ,а неевклидовой прямой — любую хорду (без концов) окружности ω. Отношения «принадлежность» и «лежать между» понимаем в обычном смысле. Неевклидовы прямые будем обозначать так: UV, U1V1 и т. д., предполагая, что U, V, U1, V1  . Таким образом, неевклидовыми точками прямой UV будут те и только те евклидовы точки, которые лежат между точками U и V.
Нетрудно убедиться в том, что при этих соглашениях выполняютсявсе аксиомы I1-3, II1-4 Гильберта. Проверим в качестве примера аксиому. Пусть А и В — две неевклидовы точки, a UV — неевклидова прямая, на которой они лежат. Так как А и В — внутренние точки хорды UV, то на этой хорде существует хотя бы одна внутренняя точка С, такая, что А — В — С. Отсюда мы заключаем, что существует по крайней мере одна неевклидова точка С, такая, что неевклидова точка В лежитмежду неевклидовыми точками А и С.
Так как в построенной модели выполняются все аксиомы групп I, II Гильберта, то выполняются и все следствия из этих аксиом, в частности имеют место теоремы, с помощью которых вводятся понятия луча и полуплоскости. Ясно, что неевклидовым лучом, исходящим из точки С, является множество всех внутренних точек произвольнойполухорды CU окружности ω (CU — евклидовотрезок, где С — внутренняя точка круга Ω, a U — точка на его границе). Неевклидовой полуплоскостью является множество всех внутренних точек какого-нибудь сегмента круга Ω.
Для того чтобы в нашей модели определить равенство отрезков и углов, введем ряд вспомогательных понятий. Напомним, что на евклидовой плоскости простым отношением трех точек А, В и С, лежащих на одной прямой, называется число (АВ, С) =λ, такое, что , а сложным отношением четырех точек А, В, С, D, лежащих на одной прямой,— число (АВ, CD) = . Из этого определения непосредственно вытекают следующие свойства.
1°. Если (АВ, CD) = (АВ, CD'), то точки D и D' совпадают.
2°. Для любых четырех точек А, В, С, D прямой имеем (АВ, CD) = (CD, AB)= = (ВА, DC) = (DC, BA).
Если четыре точки на прямой заданы своими координатами M1(x1, у1),М2 (х2, y2), М3 (х3, у3) и M4 (х4, у4), то
.                            (1)
Одна из этих формул теряет смысл, если данные точки лежат на прямой, параллельной одной из координатных осей.
Биективное отображение f : Ω → Ω назовем -преобразованием, если выполнены следующие условия.
а) Внутренние точки круга Ω переходят во внутренние точки этого же круга, а граничные точки этого круга — в граничные точки.
б)Любая хорда окружности ω переходит в некоторую хорду этой же окружности, и при этом сохраняется сложное отношение соответственных точек.
Рассмотрим примеры -преобразований.
Пример 1. Любое движение евклидовой плоскости, имеющее центр абсолюта своей инвариантной точкой, индуцирует во множестве Ω некоторое -преобразование. В частности, тождественное преобразование множества Ω, вращение вокруг центра Округа Ω, отражение от любого диаметра круга Ω являются примерами -преобразований.
Пример 2. Пусть отображение f : Ω → Ω в системе координат Оху задано формулами
,                 ,                                    где |a| < 1                               (2)
Так как для точек множества Ω: — 1 ≤ х ≤ 1, то 1 — ах ≠ 0, поэтому каждая точка множества Ω имеет образ....
tracking img