Termodinamika

  • 23 окт. 2012 г.
  • 2522 Слова
Основные определения

Термодинамика является разделом физики, в котором изучают энергию, её передачу из одного места в другое и преобразование из одной формы в другую. Термодинамика основана на наиболее общих принципах, которые являются универсальными и базируются на опытных данных многих наук.

Одним из основных специфических свойств живых существ является их способность превращать ихранить энергию в различных формах. Все биологические объекты для поддержания жизни требуют поступления энергии. Все биологические процессы связаны с передачей энергии. Растения способны получаемую ими энергию солнца накапливать в процессе фотосинтеза в форме энергии химических связей органических веществ. Животные используют энергию химических связей органических веществ, получаемых с пищей. Все процессыпревращения энергии в растениях и животных происходят в пределах ограничений термодинамических принципов. Основные принципы термодинамики универсальны для живой и неживой природы.

Термодинамика использует понятие системы. Любая совокупность изучаемых объектов может быть названа термодинамической системой. Примерами систем могут служить клетка, сердце, организм, биосфера и т.п.Существует три вида термодинамических систем в зависимости от их взаимодействия с окружающей средой:

Изолированные системы не обмениваются с внешней средой ни энергией, ни веществом. Таких систем в реальных условиях не существует, но понятие изолированной системы используют для понимания главных термодинамических принципов.

Закрытые системы обмениваются со средой энергией, но не веществом. Примером такойсистемы может служить закрытый термос с налитым в него чаем.

Открытые системы обмениваются с внешней средой как энергией, так и веществом. Все живые существа относятся к открытым термодинамическим системам.

Классическая термодинамика не рассматривает поведение отдельных атомов и молекул, а стремится описать состояние термодинамических систем с помощью макроскопических переменныхвеличин, которые называются параметрами состояния. Такими параметрами являются температура, объем, давление, химический состав, концентрация и т.п., то есть такие физические величины, с помощью которых можно описать состояние конкретной термодинамической системы в данное время.

Термодинамическое равновесие

Термодинамическое равновесие является состоянием системы, в котором параметры состояния неизменяются во времени. Это полностью стабильное состояние, в котором система может находиться в течение неограниченного периода времени. Если изолированная система выведена из равновесия, она стремится возвратиться к этому состоянию самопроизвольно.

Например, если в термос, заполненный горячей водой, температура которой в каждой точке одинакова, бросить кусочек льда, то температурное равновесие нарушится ипоявится различие температур в объёме жидкости. Известно, что передача тепла будет происходить из области с более высокой температуры в область с более низкой температурой, пока постепенно во всём объёме жидкости не установится одинаковая температура. Таким образом, разница температур исчезнет, и равновесие восстановится.

Другим примером является концентрационное равновесие. Предположим, что визолированной системе существует различие концентрации некоторого вещества. Оно вызывает перемещение вещества, которое продолжается до тех пор, пока не установится состояние равновесия, при котором концентрация вещества в пределах всей системы будет одинаковой.

Внутренняя энергия, работа и тепло

Для понимания термодинамических принципов очень важными являются понятия энергии, работы и теплоты.Энергия в широком значении - способность системы выполнять некоторую работу. Существует механическая, электрическая, химическая энергия и т.п.

Внутренняя энергия системы - сумма кинетической и потенциальной энергии всех молекул, составляющих систему. Величина внутренней энергии газа зависит от его температуры и числа атомов в молекуле газа. В...
tracking img