Арифметические устройства
Двоичное сложение
К арифметическим устройствам относятся логические схемы, которые способны реализовывать сложение и вычитание. Сумматоры и вычитатели можно получить, соединяя друг с другом обычные логические элементы.
Рассмотрим сложение двух чисел (рис. 15.1)
Рис. 15.1. Правила двоичного сложения
Первые три результата очевидны. Поскольку они соответствуютсложению десятичных чисел. В последнем суммировании (1+1), при сложении десятичных чисел результат будет 2. В двоичной системе 2 записывается как 10. Из рис. 15.1 видно, что происходит перенос 1 в соседний, старший двоичный разряд.
Рассмотрим пример на сложение двоичных чисел (рис 15.2)
Рис. 15.2. Пример двоичного сложения
Рис. 15.3. Правила двоичного сложения
Пример решается просто, пока недоходим до разряда двоек, где нужно найти двоичную сумму 1+1+1. В десятичной системе счисления эта сумма равна 3, что соответствует двоичному числу 11. При этом следует заметить, что сумма 1+1+1 может возникать в любом разряде, исключая разряд единиц. Таким образом к рис 15.1 нужно добавить еще одну комбинацию (рис. 15.3), которая справедлива для всех разрядов двоичных чисел (двоек, четверок,восьмерок и т. д.), за исключением разряда единиц.
Полусумматоры
Рассмотрим таблицу истинности для двоичных чисел (табл. 15.1). входные столбцы таблицы заполнены значениями слагаемых. В качестве выходных используется столбец для суммы и столбец для переноса.
Таблица 15.1. Таблица истинности полусумматора
Для построения схемы полусумматора, определим из табл. 15.1 булево выражение, которым можноописать состояние выходов и : , т. е. для обеспечения требуемого логического уровня на выходе входные сигналы нужно подать на входы логического элемента И;
, для реализации такой логической функции можно использовать два логических элемента И и один логический элемент ИЛИ. Кроме этого, такая логическая функция может быть реализована логическим элементом исключающее ИЛИ. Состояние этого выхода запишем вболее простой булевой форме: .
Построим логическую схему полусумматора, который состоит из двух логических элементов: 2-входового логического элемента И и 2-входового логического элемента исключающее ИЛИ (рис. 15.4). Полусумматор имеет два входа (А,В) и два выхода (У,С0).
Рис. 15.4. Логическая схема полусумматора
Полусумматор осуществляет сложение только в разряде единиц. Для двоичногосложения в разрядах двоек, четверок, восьмерок и т. д. Необходимо пользоваться полным сумматором.
Полный сумматор
Рассмотрим таблицу истинности, в которой представлены все возможные комбинации двоичный одноразрядных слагаемых А и В и сигнала переноса Cin (табл. 15.2).
Таблица 15.2 Таблица истинности сумматора
Таблица 15.2 - таблица истинности для полного сумматора. Полные сумматоры используются длясложения во всех двоичных разрядах, кроме разряда единиц. Полные сумматоры имеют три входа: А, В и дополнительный вход переноса.
Один из способов построения логической структуры полного сумматора показан на рис. 15.5. В данном способе используется два полусумматора и логический элемент ИЛИ. Соответствующие булево выражение для этой логической структуры имеют вид , .
Рис. 15.5. Структурная схема полногосумматора
Используя схему полусумматора (рис. 15.4), структурную схему изображенную на рис. 15.5 можно развернуть (рис. 15.6).
Рис. 15.6. Логическая схема полного сумматора
Полусумматоры, сумматоры обычно используются вместе. Так, для решения примера, показанного на (рис. 15.3), нужно иметь один полусумматор (для сложения в разделе единиц) и два полных сумматора (для сложения в разрядахдвоек и четверок). Для сложения много разрядных двоичных чисел требуется довольно много полусумматоров и полных сумматоров. Микропроцессорные арифметико-логические устройства (АЛУ) используются для сложения 8-разрядных, 16- или 32-разрядных двоичных чисел в микропроцессорных системах, и в их состав входит большое количество схем, аналогичных полусумматорам и...
Двоичное сложение
К арифметическим устройствам относятся логические схемы, которые способны реализовывать сложение и вычитание. Сумматоры и вычитатели можно получить, соединяя друг с другом обычные логические элементы.
Рассмотрим сложение двух чисел (рис. 15.1)
Рис. 15.1. Правила двоичного сложения
Первые три результата очевидны. Поскольку они соответствуютсложению десятичных чисел. В последнем суммировании (1+1), при сложении десятичных чисел результат будет 2. В двоичной системе 2 записывается как 10. Из рис. 15.1 видно, что происходит перенос 1 в соседний, старший двоичный разряд.
Рассмотрим пример на сложение двоичных чисел (рис 15.2)
Рис. 15.2. Пример двоичного сложения
Рис. 15.3. Правила двоичного сложения
Пример решается просто, пока недоходим до разряда двоек, где нужно найти двоичную сумму 1+1+1. В десятичной системе счисления эта сумма равна 3, что соответствует двоичному числу 11. При этом следует заметить, что сумма 1+1+1 может возникать в любом разряде, исключая разряд единиц. Таким образом к рис 15.1 нужно добавить еще одну комбинацию (рис. 15.3), которая справедлива для всех разрядов двоичных чисел (двоек, четверок,восьмерок и т. д.), за исключением разряда единиц.
Полусумматоры
Рассмотрим таблицу истинности для двоичных чисел (табл. 15.1). входные столбцы таблицы заполнены значениями слагаемых. В качестве выходных используется столбец для суммы и столбец для переноса.
Таблица 15.1. Таблица истинности полусумматора
Для построения схемы полусумматора, определим из табл. 15.1 булево выражение, которым можноописать состояние выходов и : , т. е. для обеспечения требуемого логического уровня на выходе входные сигналы нужно подать на входы логического элемента И;
, для реализации такой логической функции можно использовать два логических элемента И и один логический элемент ИЛИ. Кроме этого, такая логическая функция может быть реализована логическим элементом исключающее ИЛИ. Состояние этого выхода запишем вболее простой булевой форме: .
Построим логическую схему полусумматора, который состоит из двух логических элементов: 2-входового логического элемента И и 2-входового логического элемента исключающее ИЛИ (рис. 15.4). Полусумматор имеет два входа (А,В) и два выхода (У,С0).
Рис. 15.4. Логическая схема полусумматора
Полусумматор осуществляет сложение только в разряде единиц. Для двоичногосложения в разрядах двоек, четверок, восьмерок и т. д. Необходимо пользоваться полным сумматором.
Полный сумматор
Рассмотрим таблицу истинности, в которой представлены все возможные комбинации двоичный одноразрядных слагаемых А и В и сигнала переноса Cin (табл. 15.2).
Таблица 15.2 Таблица истинности сумматора
Таблица 15.2 - таблица истинности для полного сумматора. Полные сумматоры используются длясложения во всех двоичных разрядах, кроме разряда единиц. Полные сумматоры имеют три входа: А, В и дополнительный вход переноса.
Один из способов построения логической структуры полного сумматора показан на рис. 15.5. В данном способе используется два полусумматора и логический элемент ИЛИ. Соответствующие булево выражение для этой логической структуры имеют вид , .
Рис. 15.5. Структурная схема полногосумматора
Используя схему полусумматора (рис. 15.4), структурную схему изображенную на рис. 15.5 можно развернуть (рис. 15.6).
Рис. 15.6. Логическая схема полного сумматора
Полусумматоры, сумматоры обычно используются вместе. Так, для решения примера, показанного на (рис. 15.3), нужно иметь один полусумматор (для сложения в разделе единиц) и два полных сумматора (для сложения в разрядахдвоек и четверок). Для сложения много разрядных двоичных чисел требуется довольно много полусумматоров и полных сумматоров. Микропроцессорные арифметико-логические устройства (АЛУ) используются для сложения 8-разрядных, 16- или 32-разрядных двоичных чисел в микропроцессорных системах, и в их состав входит большое количество схем, аналогичных полусумматорам и...
Поделиться рефератом
Расскажи своим однокурсникам об этом материале и вообще о СкачатьРеферат