Гидравлика

  • 17 янв. 2014 г.
  • 3273 Слова
Содержание

1. Вязкость жидкости и ее количественные характеристики ……………………………………………………2

2. Вторая задача по расчету трубопроводов (определение пропускной способности трубы). Особенности ее решения……………………………………………………………………………………………3

3. Кавитация в трубопроводах…………………………………………………………………………………………4

4. Особенности подбора объемных насосов………………………………………………………………………..75. Решение задач……………………………………………………………………………………………………….12

1. Вязкость жидкости и ее количественные характеристики
Вязкость - свойство жидкости оказывать сопротивление относительному движению (сдвигу) частиц жидкости. Это свойство обусловлено возникновением в движущейся жидкости сил внутреннего трения, ибо они проявляются только при ее движении благодаря наличию сил сцепления между еемолекулами. Характеристиками вязкости являются: динамический коэффициент вязкости μ и кинематический коэффициент вязкости ν.
Единицей динамического коэффициента вязкости в системе СГС является пуаз (П): 1 П=1 дина·с/см2=1 г/(см·с). Сотая доля пуаза носит название сантипуаз  (сП):
1сП=0,01П.
В системе МКГСС единицей динамического коэффициента вязкости является кгс·с/м2; в системе СИ - Па·с. Связь междуединицами следующая: 1 П=0,010193 кгс·с/м2=0,1 Па·с; 1 кгс·с/м2=98,1 П=9,81 Па·с.
Кинематический коэффициент вязкости
ν=μ/ρ,
Единицей кинематического коэффициента вязкости в системе СГС является стокc (Ст), или 1 см2/с, а также сантистокс (сСт): 1 сСт=0,01 Ст. В системах МКГСС и СИ единицей кинематического коэффициента вязкости является м2/с:  1 м2/с=104Ст.
Вязкость жидкости с повышениемтемпературы уменьшается. Влияние температуры на динамический коэффициент вязкости жидкостей оценивается формулой μ = μ0·ea(t-t0), где μ = μ0 - значения динамического коэффициента вязкости соответственно при температуре t и t0 градусов; а - показатель степени, зависящий от рода жидкости; для масел, например, значения его изменяются в пределах 0,025—0,035.
Для смазочных масел и жидкостей, применяемых в машинах игидросистемах, предложена формула, связывающая кинематический коэффициент вязкости и температуру:
νt=ν50·(50/t0)n,
где νt - кинематический коэффициент вязкости при температуре t0;
ν50 - кинематический коэффициент вязкости при температуре 50 0С;
t - температура, при которой требуется определить вязкость, 0С;
n - показатель степени, изменяющийся в пределах от 1,3 до 3,5 и более в зависимости отзначенияν50.
С достаточной точностью n может определяться выражением n=lgν50+2,7. Значения n в зависимости от исходной вязкости ν при 50 0С приведены далее в таблице

Значения динамического  и кинематического  коэффициентов   вязкости некоторых жидкостей приведены далее в таблице

2. Вторая задача по расчету трубопроводов (определение пропускной способности трубы). Особенности ее решения.Определение расхода жидкости заданных при остальных параметрах перекачки жидкости по трубопроводу. Рассмотрим схему подачи жидкости (см. рис. 6.2, а) в трубопровод из напорной емкости. Необходимо определить расход жидкости, что равносильно нахождению скорости движения жидкости в трубопроводе, которая входит в уравнение Бернулли.
Составим уравнение Бернулли для сечений 1 - 1 и 2—2, пренебрегаяскоростными напорами:
H+p1-p2ρg=υ22g λl2g+ ζ
В этой формуле левая часть может быть определена по известным данным задачи. Значение скорости, а значит и расход можно было бы найти, если есть возможность найти члены, входящие в скобки выражения (6.3). В общем случае при режимах течения, отличающихся от квадратичного, коэффициенты гидравлического сопротивления ? и местного сопротивления ? зависят отчисла Re, а значит и от ?, а вид этой зависимости заранее неизвестен. Возможны два способа решения такого типа задач: аналитический и графоаналитический.
Аналитически задача может быть решена в тех случаях, когда до начала расчета можно предсказать режим течения, а значит и вид зависимости ? от Re. Так, если предположить, что режим течения будет ламинарным, то...
tracking img