Золотой период греческой науки

  • 31 марта 2012 г.
  • 4938 Слова
Введение

Появление науки произошло в Древней Греции в VII-VI вв. До н. э. Этому способствовал ряд предпосылок, сложившихся в этом государстве:
1. у греков отсутствовала каста жрецов, и поэтому научные знания были доступны любому свободному гражданину, имеющему к ним интерес;
2. демократическая форма правления в государстве, что гарантировало гражданские права и необходимость их отстаивания спомощью риторики, основанной на аргументации и убеждении оппонента.
Это способствовало развитию логического, рационального стиля мышления, необходимого для науки.
Процесс становления древнегреческой науки шел через отделение мифа от логоса, т. е. научного элемента от фантастического. Миф - это бинарное образование, сочетающее реальный и фантастический элементы. Для мифа характерно мышлениепротивоположностями, например, жизнь - смерть, белое - черное, мужское - женское, разум - интуиция и т. д. Мифологическое мышление обладает не менее стройной логикой, чем наука. Отделение мифа от логоса произошло постепенно, через разделение фантастического и реального, а также замену духовно-личностного отношения к действительности объективным.
Греческая наука стала деятельностью по получению новыхзнаний. Ее цель можно определить как получение истины из интереса к ней. Греческая наука системна и рациональна. 
Цель работы изучение развития Греческой науки в золотой период.
Для достижения цели поставим следующие задачи:
1 рассмотреть историю развития греческой науки.
2 рассмотреть основные философские греческие школы.
3 рассмотреть учения представленные греческой наукой.

1 Золотой периодгреческой науки
Расцвет греческой цивилизации приходится на период между VI веком до н.э. и серединой II века до н. э.
Развитие знаний у греков не имеет аналогов истории того времени.
В целом V и IV века до н. э. были эпохой дальнейшего накопления значительного фактического материала в таких отраслях науки, как математика, астрономия, медицина и др. Античную математику отличает тенденция к большейсистематичности, строгости и доказательности, применение новых методов исследования, имеющих не только эмпирическое, но и более широкое теоретическое значение. Так, идея бесконечно малых величин, впервые выдвинутая Анаксагором (около 500 — около 428), нашла в трудах Демокрита (около 460—370) и Эвдокса Книдского (около 408—355) своё практическое приложение в геометрии и, в частности, стереометрии (определение объёмашара, конуса и т. д.). Тот же Эвдокс разработал учение о пропорциональности и создал теорию соотношения несоизмеримых величин, которая во многом предвосхитила теорию иррациональных чисел, возникшую лишь в конце XIX в. Гиппократ из Хиоса (около 470—400) предпринял первую, предшествовавшую замечательному труду Эвклида, попытку систематизировать данные геометрии. Даже в условиях рабовладельческого строя,существенно ограничивавшего возможности технического прогресса, отдельные достижения математической мысли находили себе практическое приложение в ремесленной технике, в строительном деле и других отраслях.
В области астрономии возникают новые представления о шарообразности Земли и светил, что сделало возможным появление более правильной теории солнечных и лунных затмений. У последователей философаПифагора мы встречаем впервые мысль о том, что Земля не занимает центрального положения среди планет: в центре вселенной находится некий огонь, вокруг которого обращаются в прозрачных сферах Земля, Солнце, Луна, пять планет, а также сфера неподвижных звёзд. По-видимому, для того, чтобы количество мировых тел достигало числа 10, считавшегося пифагорейцами совершенным, они ввели ещё гипотетическую«противоземлю». Расстояния небесных сфер от центрального огня выражались, согласно пифагорейцам, в простейших («музыкальных») числовых отношениях, отсюда — учение о так называемой гармонии сфер.
Эвдокс предложил теорию гомоцентрических (т. е. объемлющих одна другую) сфер, имеющих общий центр, в котором находится Земля. Все они вращаются равномерно вокруг осей,...
tracking img