Интерференция

  • 12 марта 2010 г.
  • 1536 Слова
Казанский косударственный технологический университет.
Кафедра физической химии.

Реферат на тему: интерференция.
Применения интерференции очень важны и обширны. Интерференция света имеет самое широкое применение для измерения длины волны излучения, исследования тонкой структуры спектральной линии, определения плотности, показателей преломления и дисперсионных свойств веществ, для измеренияуглов, линейных размеров деталей в длинах световой волны, для контроля качества оптических систем и многого другого. На использовании интерференции света основано действие интерферометров и интерференционных спектроскопов; метод голографии также основан на интерференции света. Интерференцию поляризованных лучей широко используют в кристаллооптике для определения структуры и ориентации осей кристалла,в минералогии для определения минералов и горных пород, для обнаружения и исследования напряжений и деформаций в твердых телах, для создания особо узкополосных светофильтров и др.
Некоторые применения интерференции:
Проверка качества обработки поверхностей.
С помощью интерференции можно оценить качество обработки поверхности изделия с точностью до 1/10 длины волны, т.е. с точностью до 10-6 см.Для этого нужно создать тонкую клиновидную прослойку воздуха между поверхностью образца и очень гладкой эталонной пластиной. Тогда неровности поверхности размером до 10-6 см вызовут заметные искривления интерференционных полос, образующихся при отражении света от проверяемой поверхности и нижней грани эталонной пластины.
Просветление оптики.
Объективы современных фотоаппаратов и кинопроекторов,перископы подводных лодок и различные другие оптические устройства состоят из большого числа оптических стекол – линз, призм и др. Проходя через такие устройства, свет отражается от многих поверхностей. Число отражающих поверхностей в современных фотообъективах превышает 10, а в перископах подводных лодок доходит до 40. При падении света перпендикулярно поверхности доля отраженной от нее энергиисоставляет 5-9% от всей энергии. Поэтому сквозь прибор часто проходит всего 10-20% поступающего в него света. В результате этого освещенность изображения получается малой. Кроме того, ухудшается качество изображения. Часть светового пучка после многократного отражения от внутренних поверхностей все же проходит через оптический прибор, но рассеивается и уже не участвует в создании четкогоизображения. На фотографических изображениях, например, по этой причине образуется "вуаль". Для устранения этих неприятных последствий отражения света от поверхности оптических стекол надо уменьшить долю отражаемой энергии света. Даваемое прибором изображения делается при этом ярче, "просветляется". Отсюда и происходит термин просветление оптики. Просветление оптики основано на интерференции. На поверхностьоптического стекла, например линзы, наносят тонкую пленку с показателем преломления nп, меньшим показателя преломления стекла nс. Для простоты рассмотрим нормальное падение света на пленку. Разность хода световых волн 1 и 2 (рис. 0), отраженных от верхней и нижней поверхностей пленки, равна удвоенной толщине пленки 2h. Длина волны λп в пленке меньше длины волны λ в вакууме в n раз:

λп = λ/nп

Для того, чтобыволны 1 и 2 ослабляли друг друга, разность хода должна равняться половине длины волны в пленке:

2h = λп/2 = λ/2nп (1)

Если амплитуды обеих отраженных волн одинаковы или очень близки друг к другу, то гашение света будет полным. Чтобы добиться этого, подбирают соответственным образом показатель преломления пленки, так как интенсивность отраженного света определяется отношением коэффициентовпреломления двух граничащих сред. На линзу при обычных условиях падает белый свет. Выражение (1) показывает, что требуемая толщина пленки зависит от длины волны. Поэтому осуществить гашение отраженных волн всех частот невозможно. Толщину пленки подбирают так, чтобы полное гашение при нормальном падении имело место для длин волн средней части спектра (зеленый цвет, λз ≈...
tracking img