СОДЕРЖАНИЕ:
Аннотация 2
Введение 3
1. Описание модели. 4
2. Исследование модели. 5
2.1. Имеется математическое решение, но нет физического решения. 5
2.1.1. Отрицательный коэффициент хищничества (d=-1). 6
2.1.2. Коэффициент хищничества равный нулю. 7
2.1.3. Завышенный коэффициент хищничества. 9
2.2. Имеются как математическое решение так физическоерешение. 14
2.2.1. Количество жертв значительно превышает количество хищников. 14
2.2.2. Количество жертв не значительно превышает количество хищников. 19
2.2.3. Количество жертв и количество хищников примерно равны. 21
2.2.4. Количество хищников не значительно превышает количество жертв. 24
2.2.5. Количество хищников значительно превышает количество жертв. 27
Заключение. 29Список использованной литературы. 29
Аннотация
В данной курсовой работе будет проводиться исследование математической модели численности популяции («хищник-жертва») в зависимости от коэффициент хищничества a (скорость, с которой встречи хищников с жертвами позволяют хищникам прибавлять численность своей популяции).
Введение
Актуальность темы.
Впервыематематическая модель «хищник-жертва» была получена А.Лоткой (1925 г.), который использовал для описания динамики взаимодействующих биологических популяций. Чуть позже и независимо от Лотки аналогичные (и более сложные) модели были разработаны итальянским математиком В. Вольтерра (1926 г.), глубокие исследования которого в области экологических проблем заложили фундамент математической теории биологическихсообществ или так называемой математической экологии.
В качестве хищника и жертвы могут быть взяты караси и щуки, зайцы и волки, мыши и лисы, микробы и антитела и т. д. Т.е. данную модель можно использовать даже в медицине.
Цель работы.
Целью курсовой работы является закрепление теоретических знаний, полученных по данной и смежным дисциплинам, освоение современных методов и средствмоделирования систем. А также выявление зависимости математической модели «хищник-жертва» от коэффициента хищничества.
Основные методы исследования.
В данной работе в качестве метода исследования используется исследование с помощью математического моделирования.
Математическая модель – это упрощенный вариант действительности, используемый для изучения ее ключевых свойств. Чарльз Лейв иДжеймс Марч дают такое определение модели: “Модель – это упрощенная картина реального мира. Она обладает некоторыми, но не всеми свойствами реального мира. Она представляет собой множество взаимосвязанных предположений о мире. Как и любая картина, модель проще тех явлений, которые она по замыслу отображает или объясняет”.
Вклад автора курсовой работы в рассматриваемую проблему.
Моим вкладом врассматриваемую проблему является исследование влияния коэффициента хищничества на математическую модель «хищник-жертва».
Практическая (теоретическая) ценность курсовой работы.
Ценность данной курсовой работы заключается в выявленной зависимости влияния коэффициента хищничества на математическую модель «хищник-жертва».
Реализация и внедрение курсовой работы.
Даннуюкурсовую работу можно использовать при моделировании долговременных отношений между видами хищника и жертвы в какой-либо экосистеме. К примеру: караси и щуки, зайцы и волки, мыши и лисы, микробы и антитела и т. д.
1. Описание модели.
Иногда простая математическая модель хорошо описывает сложную биологическую систему. Примером этого служат долговременные отношения между видами хищника и жертвы вкакой-либо экосистеме. Математические расчеты роста популяции отдельно взятого вида показывают, что пределы плотности популяции можно описать простыми уравнениями. Кривая численности популяции растет экспоненциально, пока она небольшая, а затем выравнивается, когда она достигает пределов возможности экосистемы поддерживать ее. Простое продолжение этой...
Аннотация 2
Введение 3
1. Описание модели. 4
2. Исследование модели. 5
2.1. Имеется математическое решение, но нет физического решения. 5
2.1.1. Отрицательный коэффициент хищничества (d=-1). 6
2.1.2. Коэффициент хищничества равный нулю. 7
2.1.3. Завышенный коэффициент хищничества. 9
2.2. Имеются как математическое решение так физическоерешение. 14
2.2.1. Количество жертв значительно превышает количество хищников. 14
2.2.2. Количество жертв не значительно превышает количество хищников. 19
2.2.3. Количество жертв и количество хищников примерно равны. 21
2.2.4. Количество хищников не значительно превышает количество жертв. 24
2.2.5. Количество хищников значительно превышает количество жертв. 27
Заключение. 29Список использованной литературы. 29
Аннотация
В данной курсовой работе будет проводиться исследование математической модели численности популяции («хищник-жертва») в зависимости от коэффициент хищничества a (скорость, с которой встречи хищников с жертвами позволяют хищникам прибавлять численность своей популяции).
Введение
Актуальность темы.
Впервыематематическая модель «хищник-жертва» была получена А.Лоткой (1925 г.), который использовал для описания динамики взаимодействующих биологических популяций. Чуть позже и независимо от Лотки аналогичные (и более сложные) модели были разработаны итальянским математиком В. Вольтерра (1926 г.), глубокие исследования которого в области экологических проблем заложили фундамент математической теории биологическихсообществ или так называемой математической экологии.
В качестве хищника и жертвы могут быть взяты караси и щуки, зайцы и волки, мыши и лисы, микробы и антитела и т. д. Т.е. данную модель можно использовать даже в медицине.
Цель работы.
Целью курсовой работы является закрепление теоретических знаний, полученных по данной и смежным дисциплинам, освоение современных методов и средствмоделирования систем. А также выявление зависимости математической модели «хищник-жертва» от коэффициента хищничества.
Основные методы исследования.
В данной работе в качестве метода исследования используется исследование с помощью математического моделирования.
Математическая модель – это упрощенный вариант действительности, используемый для изучения ее ключевых свойств. Чарльз Лейв иДжеймс Марч дают такое определение модели: “Модель – это упрощенная картина реального мира. Она обладает некоторыми, но не всеми свойствами реального мира. Она представляет собой множество взаимосвязанных предположений о мире. Как и любая картина, модель проще тех явлений, которые она по замыслу отображает или объясняет”.
Вклад автора курсовой работы в рассматриваемую проблему.
Моим вкладом врассматриваемую проблему является исследование влияния коэффициента хищничества на математическую модель «хищник-жертва».
Практическая (теоретическая) ценность курсовой работы.
Ценность данной курсовой работы заключается в выявленной зависимости влияния коэффициента хищничества на математическую модель «хищник-жертва».
Реализация и внедрение курсовой работы.
Даннуюкурсовую работу можно использовать при моделировании долговременных отношений между видами хищника и жертвы в какой-либо экосистеме. К примеру: караси и щуки, зайцы и волки, мыши и лисы, микробы и антитела и т. д.
1. Описание модели.
Иногда простая математическая модель хорошо описывает сложную биологическую систему. Примером этого служат долговременные отношения между видами хищника и жертвы вкакой-либо экосистеме. Математические расчеты роста популяции отдельно взятого вида показывают, что пределы плотности популяции можно описать простыми уравнениями. Кривая численности популяции растет экспоненциально, пока она небольшая, а затем выравнивается, когда она достигает пределов возможности экосистемы поддерживать ее. Простое продолжение этой...
Поделиться рефератом
Расскажи своим однокурсникам об этом материале и вообще о СкачатьРеферат