Код бчх

  • 01 апр. 2012 г.
  • 3859 Слова
Сети Хопфилда
Сети, рассмотренные в предыдущих главах, не имели обратных связей, т. е. связей, идущих от выходов сетей и их входам. Отсутствие обратной связи гарантирует безусловную устойчивость сетей. Они не могут войти в режим, когда выход беспрерывно блуждает от состоянl 434j93ee 0;я к состоянl 434j93ee 0;ю и не пригоден к использованию. Но это весьма желательное свойство достигается небесплатно, сети без обратных связей обладают более ограниченными возможностями по сравнению с сетями с обратными связями.
Так как сети с обратными связями имеют пути, передающие сигналы от выходов к входам, то отклик таких сетей является динамическим, т. е. после приложения нового входа вычисляется выход и, передаваясь по сети обратной связи, модифицирует вход. Затем выход повторно вычисляется, и процессповторяется снова и снова. Для устойчивой сети последовательные итерации приводят к все меньшим изменениям выхода, пока в конце концов выход не становится постоянl 434j93ee 5;ым. Для многих сетей процесс никогда не заканчивается, такие сети называют неустойчивыми. Неустойчивые сети обладают интересными свойствами и изучались в качестве примера хаотических систем. Однако такой большой предмет, как хаос,находится за пределами этой книги. Вместо этого мы сконцентрируем внимание на устойчивых сетях, т. е. на тех, которые в конце концов дают постоянl 434j93ee 5;ый выход.
Проблема устойчивости ставила в тупик первых исследователей. Никто не был в состоянl 434j93ee 0;и предсказать, какие из сетей будут устойчивыми, а какие будут находиться в постоянl 434j93ee 5;ом изменении. Более того, проблемапредставлялась столь трудной, что многие исследователи были настроены пессимистически относительно возможности бе решения. К счастью, в работе [2] была получена теорема, описавшая подмножество сетей с обратными связями, выходы которых в конце концов достигают устойчивого состоянl 434j93ee 0;я. Это замечательное достижение открыло дорогу дальнейшим исследованиям и сегодня многие ученые занимаютсяисследованием сложного поведения и возможностей этих систем.
Дж. Хопфилд сделал важный вклад как в теорию, так и в применение систем с обратными связями. Поэтому некоторые из конфигураций известны как сети Хопфилда. Из обзора литературы видно, что исследованием этих и сходных систем занимались многие. Например, в работе [4] изучались общие свойства сетей, аналогичных многим, рассмотренным здесь. Работы,цитируемые в списке литературы в конце главы, не направлены на то, чтобы дать исчерпывающую библиографию по системам с обратными связями. Скорее они являются лишь доступными источниками, которые могут служить для объяснения, расширения и обобщения содержимого этой книги.
КОНФИГУРАЦИИ СЕТЕЙ С ОБРАТНЫМИ СВЯЗЯМИ
На рис. 6.1 показана сеть с обратными связями, состоящая из двух слоев. Способ представления несколькоотличается от использованного в работе Хопфилда и других, но эквивалентен им с функциональной точки зрения, а также хорошо связан с сетями, рассмотренными в предыдущих главах. Нулевой слой, как и на предыдущих рисунках, не выполняет вычислительной функции, а лишь распределяет выходы сети обратно на входы. Каждый нейрон первого слоя вычисляет взвешенную сумму своих входов, давая сигнал NET, который затемс помощью нелинейной функции F преобразуется в сигнал OUT. Эти операции сходны с нейронами других сетей (см. гл. 2).
Бинарные системы
В первой работе Хопфилда [6] функция F была просто пороговой функцией. Выход такого нейрона равен единице, если взвешенная сумма выходов с других нейронов больше порога Tj, в противном случае она равна нулю. Он вычисляется следующим образом:
(6.1)
OUT, = 1, еслиNETj>Тj,
OUT. = 0, если NETj<Тj,
OUT не изменяется, если NETj = Тj,

Рис. 6.1. Однослойная сеть с обратными связями.
Пунктирные линии обозначают нулевые веса
Состоянl 434j93ee 0;е сети √ это просто множество текущих значений сигналов OUT от всех нейронов. В первоначальной сети Хопфилда состоянl 434j93ee 0;е каждого нейрона менялось в дискретные...
tracking img