Математические формулы

  • 24 янв. 2013 г.
  • 32692 Слова
ББК 22.1 Ц97 УДК 51

Ц ы п к и н А . Г . , Ц ы п к и н Г . Г . Математические формулы. Алгебра. Геометрия. Математический анализ: Справочник. — М.: Наука. Гл. ред. физ.-мат. литры, 1985. — 128 с. Представлены основные формулы алгебры, геометрии (включая дифференциальную геометрию и векторное исчисление), тригонометрии. Широко представлены формулы и основные понятия и теоремы математическогоанализа. Приведены таблицы основных интегралов. Для широкого круга специалистов и учащейся молодежи.

Рецензент: Доктор физико-математических наук С. А. Степанов

Ц

1702070000 − 167 52-85 053(02) − 85

© Издательство «Наука» Главная редакция физико-математической литературы, 1985

3

ПРЕДИСЛОВИЕ
В книге достаточно полно представлены основные формулы следующих разделов математики:алгебры, геометрии (включая аналитическую и дифференциальную геометрию и векторное исчисление), математического анализа, теории функций комплексного переменного, а также основные формулы для некоторых трансцендентных функций (тригонометрических, гиперболических, интегральных и т. д.). При подборе материала, включенного в справочник, авторы старались ограничиться приведением классических, часто используемыхформул указанных выше разделов математики. Именно с такими формулами имеют дело учащиеся средних школ, техникумов, ПТУ, студенты втузов и научно-технические работники. Для этого круга читателей и предназначена настоящая книга. Для удобства читателей в начале разделов справочника, посвященных высшей математике, перед изложением основного материала даются формулировки основных понятий, встречающихся в данномразделе. В ряде разделов справочника (в частности, посвященных формулам интегрального исчисления и формулам теории функций комплексного переменного) характер налагаемого материала потребовал, наряду с формулами, дать также и условия их применимости, а в некоторых случаях, для правильного понимания формул, и формулировки теорем, результатом которых является та пли иная формула. В ряде случаевавторы сочли возможным дать наиболее простые формулировки теорем, из которых следуют приводимые формулы. Более слабые условия, а также условия специального вида, при которых могут быть доказаны эти теоремы и при которых верны соответствующие формулы, читатель может найти в специальной литературе. Основное назначение справочника — получение краткой справки по формулам указанных разделов математики. Дляболее подробного и детального ознакомления с интересующими читателя математическими фактами и формулами он может обратиться к литературе, список которой дан в конце справочника. В список цитируемой литературы, ни в какой мере не претендующий хотя бы на относительную полноту, включены лишь наиболее известные издания, вышедшие в последние годы. Обозначения, принятые в справочнике, соответствуют обозначениям,принятым в большинстве учебников и книг по математике. Следуя общепринятым обозначениям в различных разделах математики, в тех случаях, когда это не вызывает недоразумения, авторы сочли возможным использовать одни и те же символы для обозначения математических объектов из разных разделов математики. Авторы будут весьма признательны всем читателям, которые выскажут своп замечания, касающиеся какподбора материала, включенного в справочник, так и структуры изложения, что поможет им в дальнейшей работе по совершенствованию справочника и расширению возможного круга читателей.

4

I. ДЕЙСТВИТЕЛЬНЫЕ ЧИСЛА. АЛГЕБРА
1. Действительные числа
1.1. Каноническое разложение натурального числа: где p1, …, ps — различные между собой простые,
k k k n = p11 ⋅ p22 ⋅ … ⋅ ps s

k1, …, ks — натуральныечисла.

1.2. Некоторые признаки делимости натуральных чисел. Число делится на 2, если его последняя цифра есть число четное или нуль. Число делится на 4, если две его последние цифры — нули или образуют число, делящееся на 4. Число делится на 8, если три последние его цифры — нули или образуют число, делящееся на 8. Число делится на 3, если сумма цифр числа делится...