Основные этапы математического моделирования

  • 28 нояб. 2011 г.
  • 2531 Слова
Оглавление

Введение……………………………………………………………………….Стр.
1. Основы этапы и цели моделирования……………………… Стр.
1.1. Постановка цели моделирования……………………………………….Стр.
1.2. Идентификация реальных объектов...................................... Стр.
1.3. Выбор вида моделей……………………………………………………Стр.
1.4. Выбор математической схемы………………………………………….Стр.
2. Построение непрерывно-стахостическоймодели…… Стр.
2.1. Основные понятия теории массового обслуживания………………. Стр.
2.2. Определение потока событий……………………………………………Стр.
2.3. Постановка алгоритмов ……………………………..………………….Стр.
3. Программная реализация модели………………………….… Стр.
3.1. Оптимизация алгоритма………………………………..……………….Стр.
3.2. Листинг программы………..……………………………………………Стр.
Вывод…………………………………………………………………………Стр.
Список используемойлитературы……………………………….. Стр.
Приложение…………………………………………………………………..Стр.

Введение

Современное состояние общества характеризуется внедрением достижений научно-технического прогресса во все сферы деятельности. Переживаемый в настоящее время этап развития является этапом информатизации. Информатизация - это процесс создания, развития и все-общего применения информационных средств итехнологий, обеспечивающих кардинальное улучшение качества труда и условий жизни в обществе. Информатизация тесно связана с внедрением информационно-вычислительных систем, с повышением уровня автоматизации орга-низационно-экономической, технологической, административно-хозяй-ственной, проектно-конструкторской, научно-исследовательской и других видов деятельности. Создание сложных технических систем, проектирование иуправление сложными комплексами, анализ экологической ситуации, особенно в условиях агрессивного техногенного воздействия, исследование социальных проблем коллективов, планирование развития регионов и многие другие направления деятельности требуют организации исследований, которые имеют нетрадиционный характер. По ряду специфических признаков все перечисленные объекты прикладной деятельностиобладают свойствами больших систем. Таким образом, в различных сферах деятельности приходится сталкиваться с понятиями больших или сложных систем.
В разных сферах практической деятельности развивались соответствующие методы анализа и синтеза сложных систем. Системность стала не только теоретической категорией, но и аспектом практической деятельности. Ввиду того, что сложные системы стали предметомизучения, проектирования и управления, потребовалось обобщение методов исследования систем. Появилась объективная необходимость в возникновении прикладной науки, устанавливающей связь между абстрактными теориями системности и системной практикой. В последнее время это движение оформилось в науку, которая получила название «системный анализ».
Особенности современного системного анализа вытекают из самойприроды сложных систем. Имея в качестве цели ликвидацию проблемы или, как минимум, выяснение ее причин, системный анализ привлекает для этого широкий спектр средств, использует возможности различных наук и практических сфер деятельности. Являясь по существу прикладной диалектикой, системный анализ придает большое значение методологическим аспектам любого системного исследования. С другой стороны,прикладная направленность системного анализа приводит к необходимости использования всех современных средств научных исследований - математики, вычислительной техники, моделирования, натурных наблюдений и экспериментов.
Системный анализ является меж- и наддисциплннарным курсом, обобщающим методологию исследования сложных технических, природных и социальных систем. Для проведения анализа и синтезасложных систем используется широкий спектр математических методов. Основу математического аппарата данной дисциплины составляют линейное и нелинейное программирование, теория принятия решений, теория игр, имитационное моделирование, теория массового обслуживания, теория статистических выводов и т.п.

Основы цели, проблемы и этапы моделирования

Основная общая цель...