Основы тензорного анализа в 4х-мерных пространствах сигнатуры Лоренца

  • 09 сент. 2010 г.
  • 3657 Слова
Содержание


1. Тензор 3
2. Метрический тензор. 6
3. Коэффициенты связности (символы Кристоффеля) 9
4. Ковариантное дифференцирование 13
5. Тензор кривизны 15
6. Тензор Риччи. 17
7. Тензор Эйнштейна 19
8. Тензор Вейля 21
9. Рассчетная часть. 23
Литература 29

1. Тензор

Тензор ранга (n,m) над d-мерным векторным пространством V есть элемент тензорного произведения mпространств V и n сопряжённых пространств V * (то есть пространств линейных функционалов (1-форм) на V)

Сумма чисел n + m называется валентностью тензора (её также часто называют рангом). Тензор ранга (n,m) также называется n раз ковариантным и m раз контравариантным.
Тензор определяется как геометрический объект, который описывается многомерным массивом, то есть набором чисел, занумерованныхнесколькими индексами, или, иначе говоря, таблицей (вообще говоря, n-мерной, где n — валентность тензора (см. выше)).
Так вектор (тензор первого ранга) задаётся одномерным массивом (строкой или лучше — столбцом), а такие объекты как линейный оператор и квадратичная форма — двумерной матрицей. Скаляр же (тензор нулевого ранга) задаётся одним числом (которое можно рассматривать как нульмерный массив сединственным элементом). (Скаляры и векторы удобно рассматривать в качестве частных случаев тензоров, так как все тензорные определения и теоремы для них в силе и векторы со скалярами можно при общем рассмотрении не упоминать отдельно).
Вводятся тензорные операции, которые можно считать прямым обобщением матричных операций (умножение матриц между собой и с векторами), а также векторных операций,таких, как скалярное произведение. Эти операции, если исходить из современного (аксиоматического) определения, прямо вытекают из (поли-)линейности тензоров в этом определении, после разложения векторов, свёртываемых с тензорами, по базису векторного пространства, точно так же, как и матричные операции вытекают из линейности линейных операторов и билинейных форм, представлением каждого из которыхв конкретном базисе является конкретная матрица.
С помощью этих операций тензоры связываются с такими фундаментальными геометрическими объектами, как векторы и скаляры, чем, в конечном счёте, определяется их геометрический смысл. Эти же операции связывают тензоры с матрицами преобразований координат (матрицами якоби). Если речь идёт о тензорном анализе на (римановом или псевдоримановом, с которымиобычно имеют дело в классическом подходе, по крайней мере, на первом этапе) многообразии общего вида, все эти операции определяются обычно общековариантным способом (то есть способом, не зависящим от выбора криволинейных координат) с помощью метрического тензора.
Основными тензорными операциями являются сложение, в этом подходе сводящееся к покомпонентному сложению, аналогично векторам, исвёртка — с векторами, между собой и сами с собой, обобщающая матричное умножение, скалярное произведение векторов и взятие следа матрицы. Умножение тензора на число (на скаляр) можно при желании считать частным случаем свёртки, оно сводится к покомпонентному умножению.
Значения чисел в массиве, или компоненты тензора, зависят от системы координат, но при этом сам тензор, как геометрическая сущность, от нихне зависит. Под проявлениями этой геометрической сущности можно понимать много что: различные скалярные инварианты, симметричность/антисимметричность индексов, соотношения между тензорами и другое. Например, скалярное произведение и длина векторов не меняется при поворотах осей, а метрический тензор всегда остаётся симметричным. Свёртки любых тензоров с самими собой и/или другими тензорами (в томчисле векторами), если в результате не осталось ни одного индекса, являются скалярами, то есть инвариантами относительно замены координат: это общий способ постороения скалярных инвариантов.
При замене системы координат компоненты тензора преобразуются по определённому линейному закону.
Зная компоненты тензора в одной координатной системе, всегда можно вычислить его компоненты в...
tracking img